实数属性
实数有属性!
例子:乘以零
实数乘以零的结果是零:
- 5 × 0 = 0
- −7 × 0 = 0
- 0 × 0.0001 = 0
- 依此类推!
这叫"零乘积属性"。
属性
以下是实数的主要属性
相对于加法和乘法,实数是交换、结合和分配的:
交换 | 例子 | |||
a + b = b + a | 2 + 6 = 6 + 2 | |||
ab = ba | 4 × 2 = 2 × 4 | |||
结合 | 例子 | |||
(a + b) + c = a + ( b + c ) | (1 + 6) + 3 = 1 + (6 + 3) | |||
(ab)c = a(bc) | (4 × 2) × 5 = 4 × (2 × 5) | |||
分配 | 例子 | |||
a × (b + c) = ab + ac | 3 × (6+2) = 3 × 6 + 3 × 2 | |||
(b+c) × a = ba + ca | (6+2) × 3 = 6 × 3 + 2 × 3 |
实数对加法和乘法是封闭的(结果也是实数):
封闭性 | 例子 | |||
a+b 是实数 | 2 + 3 = 5 是实数 | |||
a×b 是实数 | 6 × 2 = 12 是实数 | |||
加以零不改变实数,乘以一也一样:
恒等元 | 例子 | |||
a + 0 = a | 6 + 0 = 6 | |||
a × 1 = a | 6 × 1 = 6 |
实数的加法逆元是实数的负值,乘法逆元是实数的倒数:
加法逆元 | 例子 | |||
a + (−a ) = 0 | 6 + (−6) = 0 | |||
乘法逆元 | 例子 | |||
a × (1/a) = 1 | 6 × (1/6) = 1 | |||
但 0 就不行,因为 1/0 是 未定义的 |
乘以零的结果是零(零乘积属性):
零乘积 | 例子 | |||
若f ab = 0 则 a=0 或 b=0 或两者皆是 | ||||
a × 0 = 0 × a = 0 | 5 × 0 = 0 × 5 = 0 |
乘法:负负得正、负正得负:
负值 | 例子 | |||
−1 × (−a) = −(−a) = a | −1 × (−5) = −(−5) = 5 | |||
(−a)(−b) = ab | (−3)(−6) = 3 × 6 = 18 | |||
(−a)(b) = (a)(−b) = −(ab) | −3 × 6 = 3 × −6 = −18 |