部分分式分解

一个"分解"含有多项式的分数的方法。

什么是部分分式?

我们可以直接这样做

部分分式

像这样:

2 x−2 + 3 x+1 = 2(x+1) + 3(x−2) (x−2)(x + 1)

这便可以简化为:

= 2x+2 + 3x−6 x2+x−2x−2

= 5x−4 x2−x−2

(去看使用有理式来了解更多。)

 

……但倒转过来怎样做?

部分分式

以下我们将会探索:

怎样求一个分数的"各部分"
("部分分式")。

为什么需要部分分式?

首先……我们为什么需要部分分式?

因为每个部分分式都比较简单

故此它们可以帮助我们去解比较复杂的分数。比方,在 积分学里,部分分式是非常有用的。

部分分式分解

我现在来做个示范。

这叫"部分分式分解",像这样:

部分分式   一、把下面化为因式。
     
部分分式   二、每个因式写成一个部分分式
     
部分分式   三、 全部乘以下面的式,之后式子不再是分数了

四、现在来找常数!

代入下面的式子的根("零点")可能会有用:

部分分式
     
得到答案了:   部分分式

 

那相当容易!……老实说,太容易了……

……其实它可以非常困难

现在我们详细看每一步。

真有理式

这方法只适用于有理式,就是上面的次数是小于下面的次数的有理式。

次数指数

若式子是假的,先去做多项式长除

把下面化为因式

你自己来把下面化为因式。看代数因式分解

可是不要化为复数……你可能要把一些因式保留为二次式(叫"不可约二次因式",因为再分解下去就会出现复数了):

例子:(x2-4)(x2+4)

 

我们只能做成这样:

(x-2)(x+2)(x2+4)

 

故此,因式可以是

的组合

当你有一个二项式,你便需要包括这部分分式:

B1x + C1(你的二项式)

有指数的因式

有时候你可能得到一个有指数的因式,像 (x-2)3……

每个从 1 以上的指数都需要一个部分分式。

像这样:

例子:

1(x−2)3

有以下的部分分式:

A1x−2 + A2(x−2)2 + A (x−2)3

二次式也可以一样:

例子:

1(x2+2x+3)2

有以下的部分分式:

B1x + C1x2+2x+3 + B2x + C2(x2+2x+3)2

 

有时候用根也解不了

就算用了下面部分的根(零点),你也可能得到未知的常数。

所以下一步是:

合并同类项(x 的指数是相同的项),然后以它为线性方程组来解。

 

开玩笑!太复杂了!好,我们来看一个例子:

复杂完整的例子

一个复杂的例子!

x2+15(x+3)2 (x2+3)

x2+15(x+3)2(x2+3)  =  A1x+3 + A2(x+3)2 + Bx + Cx2+3

全部乘以 (x+3)2(x2+3):

x2+15 = (x+3)(x2+3)A1 + (x2+3)A2 + (x+3)2(Bx + C)

x = -3 有个根(因为 x+3=0),所以用它试试:

(-3)2+15 = 0 + ((-3)2+3)A2 + 0

简化为:

24 = 12A2

所以 A2=2

2 代入 A2

x2+15 = (x+3)(x2+3)A1 + 2x2+6 + (x+3)2(Bx + C)

展开:

x2+15 = (x3+3x+3x2+9)A1 + 2x2+6 + (x3+6x2+9x)B + (x2+6x+9)C

合并同类项(x的指数是相同的项):

x2+15 = x3(A1+B)+x2(3A1+6B+C+2)+x(3A1+9B+6C)+(9A1+6+9C)

把每个 x 的指数分开来写,写成线性方程组

x3:   0 = A1+B
x2:   1 = 3A1+6B+C+2
x:   0 = 3A1+9B+6C
常数:   15 = 9A1+6+9C

简化并整齐地重排:

0 = A1 + B    
-1 = 3A1 + 6B + C
0 = 3A1 + 9B + 6C
1 = A1     + C

好了,去解它!

你可以用你喜欢的方法去解……我就先从第二个方程减去第四个方程:

0 = A1 + B    
-2 = 2A1 + 6B    
0 = 3A1 + 9B + 6C
1 = A1     + C

把第一个方程乘以 2,把结果从第二个方程减去:

0 = A1 + B    
-2 =     4B    
0 = 3A1 + 9B + 6C
1 = A1     + C

现在我们知道 B = -(1/2)

所以,从第一个方程我们可以算出 A1 = +(1/2)

接着,从第四个方程我们可以算出 C = +(1/2)

最后结果:

A1=1/2 A2=2 B=−(1/2) C=1/2

 

我们终于得到所有部分分式了:

x2+15 (x+3)2(x2+3)   =   1 2(x+3) + 2 (x+3)2 + −x + 1 2(x2+3)

唷!精疲力竭,但终于做好了!

(附注:我花了差不多
一个小时
来做这个,因为
当中我犯了两个错误 !)

总结