circle  

画一个圆很容易:

一条与中心点有固定距离封闭曲线就是圆。

也就是说:

在这条弧线上的所有的点到中心点的距离都相等。

自己画个圆

在一块木板上钉一个图钉,用图钉固定住绳子的一端,在另一端绑上一支铅笔。 在保持绳子绷直的情况下绕图钉一周画一个圆。

circle draw

玩一玩

拖动图中的点A,观察半径和周长是如何改变的。

半径、直径和周长

radius diameter circumference: circle/diameter = pi = 3.14159...

半径 指的是连接圆心和圆上的任意一点的线段。

直径 指的是通过圆心并且两端都在圆上的线段。

圆的周长指的是圆形一周的长度。

用周长除以直径,我们可以得到3.141592654......。
这个数字就是圆周率—— π (Pi)

也就是说当圆的直径为1的时候,圆的周长为3.141592654...

  circle: diameter=1, circumference=pi

我们也可以这么说:

周长 = π × 直径

例题:绕一个直径为100米的圆行走一圈后,你所走过的距离是多少?

pi circle 100m

走过的距离 = 圆的周长 = π × 100米

= 314米 (精确到米)

又因为直径的长度是半径的两倍:

直径 = 2 × 半径

所以周长也可以被表示为:

周长 = 2 × π × 半径

巧记

定义

圆是一个平面平面图形(二维图形):

我们通常对一个圆的定义是:

  plane

在同一平面内到“中心点”的距离相等的所有的点的集合 所构成的图形是圆。

面积

area of circle

圆的面积等于π 乘以半径的平方,用公式表示为

S = π r2

circle area pi r-squared (but pies are round!)

也可以用直径来表示面积:

S = (π/4) × D2

例题:半径为1.2米的圆的面积是多少?

S = π × r2

S = π × 1.22

S = π × (1.2 × 1.2)

S = 3.14159... × 1.44 = 4.52 (to 2 decimals)

与正方形的面积比较

circle area is about 80% of square

圆的面积与宽度相等的正方形面积之比为(π/4) = 0.785398... = 78.5398...%
也就是说,一个圆形的面积大约是一个宽度相同的正方形的面积的80%。

命名

人类研究圆的历史长达上千年之久。在研究的过程中为了方便表述,人们创造了一些有关于圆的专有名词。

因此,在现在的生活中,没有人会用"过圆心且两端在圆上的线段"来表述"直径"

下面我们来介绍一些这样的常见专有名词:

circle lines

园中的线段

连接圆上任意两点的线段是圆的弦(Chord)

过圆心的弦是圆的直径(Diameter)

"刚好接触到"圆周的直线是圆的切线(Tangent)。切线至于圆交于一点。

圆周的一部分被称为圆的弧(Arc)

circle slices

圆的部分

圆有两种主要的组成部分

像"披萨"一样的部分叫 扇形

被弦截出来的部分叫扇形

常见扇形

四分之一圆和半圆是圆的两种常见扇形:

quadrant 圆心角为直角角的扇形叫四分之一圆(Quadrant)

圆心角为平角的扇形叫半圆(Semicircle)
Semicircle

圆内和圆外

circle

圆有内部和外部,平面上的点可以在圆内、圆外或圆上。

以左图为例,A点在圆外,B点在院圆内,C点在圆上。

 

翻译 Nanze Chen (Curtis), Feiyang Yu (Kathy), Wenminqi Zhang (Sophia)

 
Activity: Approximate Value For Pi